
MIT/WHOI 2005-03

Massachusetts Institute of Technology

Woods Hole Oceanographic Institution

4% Joint Program

OF•T•c Applied Ocean Science 190

and Engineering

DOCTORAL DISSERTATION

Inversion for Subbottom Sound Velocity Profiles in the
Deep and Shallow Ocean

by

Luiz L. Souza

February 2005

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited



Inversion for Subbottom Sound Velocity Profiles in

the Deep and Shallow Ocean
by

Luiz Alberto Lopes de Souza
Engenheiro Eletricista, Faculdades Reunidas Nuno Lisboa, Brazil (1976)

M.Sc. E.E. and Eng. Acoustics, Naval Postgraduate School (1989)

Submitted to the Departments of Ocean Engineering, MIT, and
Applied Ocean Physics and Engineering, WHOI,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Applied Ocean Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the
WOODS HOLE OCEANOGRAPHIC INSTITUTION

February 2005

© Luiz Alberto Lopes de Souza, MMV. All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce
and distribute publicly paper and electronic copies of this thesis

document in whole or in part.

A uthor .....................................
Departments o Ocean Engineer

Applied Ocean Physics and Engineering, WHOI,

Certified by Z uary 18th 2005

George V. Frisk
Scientist Emeritus, WHOI

Accepted. . . Thesis Supervisor

Accepted by ............... .......... .........._.........

Mark A. Grosenbaugh
Chair, Joint Committee in Applied Ocean Science and Engineering,

MIT/WHOI



Inversion for Subbottom Sound Velocity Profiles in the Deep

and Shallow Ocean

by

Luiz Alberto Lopes de Souza

Submitted to the Departments of Ocean Engineering, MIT, and
Applied Ocean Physics and Engineering, WHOI,

on January 18th, 2005, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Applied Ocean Sciences

Abstract

This thesis investigates the application of acoustic measurements in the deep and shallow
ocean to infer the sound velocity profile (svp) in the seabed. For the deep water ocean, an
exact method based on the Gelfand-Levitan integral equation is evaluated. The input
data is the complex plane-wave reflection coefficient estimated from measurements of
acoustic pressure in water. We apply the method to experimental data and estimate
both the reflection coefficient and the seabed svp. A rigorous inversion scheme is hence
applied in a realistic problem.

For the shallow ocean, an inverse eigenvalue technique is developed. The input
data are the eigenvalues associated with propagating modes, measured as a function of
source-receiver range. We investigate the estimation of eigenvalues from acoustic fields
measured in laterally varying environments. We also investigate the errors associated
with estimating varying modal eigenvalues, analogous to the estimation of time-varying
frequencies in multicomponent signals, using time-varying autoregressive (TVAR) meth-
ods. We propose and analyze two AR sequential estimators, one for model coefficients,
another for the zeros of the AR characteristic polynomial. The decimation of the pressure
field defined in a discrete range grid is analyzed as a tool to improve AR estimation.

The nonlinear eigenvalue inverse problem of estimating the svp from a sequence of
eigenvalues is solved by iterating linearized approximations. The solution to the inverse
problem is proposed in the form of a Kalman filter. The resolution and variance of
the eigenvalue inverse problem are analyzed in terms of the Cramer-Rao lower bound
and the Backus-Gilbert (BG) resolution theory. BG theory is applied to the design
of shallow-water experiments. A method is developed to compensate for the Doppler
deviation observed in experiments with moving sources.

Thesis Supervisor: George V. Frisk
Title: Scientist Emeritus, WHOI
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Chapter 1

Introduction

1.1 Background

This thesis deals with the problem of measuring geoacoustic properties of the ocean

subbottom, the region of the seabed close to the water interface, from acoustic mea-

surements in the water column. One important problem in Ocean Acoustics, as well as

other branches of Acoustics, is the prediction of the sound field produced by a source in

a given environment, the so called forward problem. The environment is characterized

by its geometry and the physical properties of the water and surrounding media. In the

ocean the geometry is determined by the bathymetry, the varying sea surface position,

and the location of source and receiver.

For sound propagation prediction purposes and at sufficiently low frequencies, the

sea surface is reasonably and simply modeled as a plane, pressure release surface where

the acoustic pressure is zero. The water column and the seabed require a more complex

description. In the water, the most important parameters are the sound velocity and

absorption coefficient. Sediments may, in many cases, be also characterized as a fluid,

but shear speed and absorption become important depending on the frequency and how

close the source and receiver are to the bottom. More elaborate sediment models may

require 13 or more parameters[72]. The sensitivity of the acoustic field with respect to
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these geoacoustic properties suggests the idea of using sound measurements to infer their

values, the geoacoustic inverse problem.

The idea is far from new. For decades marine geophysicists have used sound pro-

duced in the water to infer properties of the sea floor, and low frequency echo sounders

or subbottom profilers have been used to obtain pictures of the bottom structure[1O].

For the purpose of underwater propagation prediction, however, the subbottom must

be characterized down to tens of meters below the water interface, not the kilometers

geophysicists usually focus on. In the eighties, for example, a set of experiments were

conducted in the Icelandic Basin, ultimately to characterize the seabed for application

to propagation modeling [21]. When the US Navy started focusing on littoral warfare,

the Office of Naval Research sponsored efforts to measure the properties of sediments

in shallow waters down to a few hundred meters[71]. The geoacoustic inverse problem

is an active area in Ocean Acoustics. The inversion for the sound velocity profile in the

subbottom, modeled as a fluid, from acoustic data in water is the focus of the thesis.

Inverse methods can be broadly classified in three groups. One group includes tech-

niques that solve iteratively the forward problem. Starting from a background environ-

mental model, the forward solution is compared to a set of noisy measurements and the

environmental parameters are adjusted in order to minimize a measure of the fitting er-

ror. These parameter search/optimization methods may involve hundreds of thousands

of forward solutions, and are computationally intensive. They are the most used today

by the Ocean Acoustics community, as can be inferred from the large number of books,

articles, and conference presentations on the subject[9, 26, 74, 13].

On the other extreme are the methods based on a rigorous or exact formulation of the

inverse problem[70, 45]. These theories relate some quantity inferred from the measured

field (e.g., reflection coefficient, normal mode characteristic wavenumbers) to the desired

property (sound velocity profile). Conditions for existence and uniqueness of solutions

are usually established. The exact methods are developed for idealized conditions and

require data whose measurement may not be feasible. Measurement error (noise) is not

9



usually considered.

Perturbative inverse techniques[43, 67, 61] provide a compromise between exact

methods and those based on parameter search/optimization. The perturbative ap-

proach relies on the fact that the typical range of sound velocities and densities in

the ocean and seabed are small compared to their mean value. Contrary to the pa-

rameter search/optimization methods, perturbative techniques are easily implemented

and computationally inexpensive (the solution of the wave equation is computed a small

number of times). One advantage over the exact methods is that measurement errors

can be easily dealt with.

1.2 Thesis Overview

Exact formulations may lead to effective sound velocity profile measurement techniques

that do not depend on initial guesses of the solution or its properties, and for which

the conditions for uniqueness of the solution, if not attainable, are at least known. The

mathematical framework make them suitable candidates for reference inverse methods.

Chapter 2 discusses the application of an exact inverse theory to actual experimental

data. The exact theory was developed by Merab[45] and is based on the work of Gelfand

and Levitan[25] developed in the context of potential inversion from scattering data in

Quantum Mechanics. The input data required by Merab's method is the complex plane-

wave reflection coefficient of the bottom.

The measurement of the magnitude and phase of the bottom reflection coefficient is

an important issue in ocean acoustics by itself. In Chapter 2, a technique developed by

Frisk and co-workers[22, 46] is applied to the measurement of the reflection coefficient

using monochromatic acoustic data from the deep water experiment at the Icelandic

Basin described by Frisk, Doutt, and Hays[21].

Apparently, there is a view in the Ocean Acoustics community

"that there is a difficulty in applying rigorous inversion schemes in realistic

10



problem, as the latter require much more information than is available in the

experiments[74, p. v.]."

As shown in Chapter 2, this is not necessarily true. The reflection coefficient is estimated

from actual experimental pressure data, which is then used as input to Merab's method.

The sound velocity profile in the seabed is recovered, and the errors explained.

In order to construct analytically tractable inverse problems, simplifying assump-

tions such as, for example, depth-only dependence of the geoacoustic parameters and

lack of shear rigidity, are made. The results of rigorous methods may be, despite the

simplifying assumptions, satisfactory for applications in acoustic propagation prediction.

In addition, the inverted sound velocity profile may be used as the initial solution in

a non rigorous iterative inversion technique using a more realistic description of the

environment.

Normal modes are a dominant feature of the acoustic field in shallow water. In terms

of the wavenumber spectrum, most of the power is concentrated in certain characteristic

wavenumbers. Estimating the reflection coefficient required by Merab's method in such

conditions, for example, is still an open problem. In shallow-water it seems reasonable

to use the modal characteristic wavenumbers, which depend on the environmental prop-

erties, as the input data of an inverse method. Perturbative techniques that explore

this modal information have been developed by Rajan and co-workers[61]. Chapters 3

and 4 discuss the extension of Rajan's method to environments whose properties are

range-dependent.

Chapter 3 deals with the high-resolution, sequential eigenvalue estimation required

for the characterization of range-dependent environments. It shows that the modal sum

in a range-dependent environment can be exactly represented by a recursive difference

equation, which justifies the application of autoregressive (AR) techniques as proposed

by Becker[6]. Chapter 3 also shows, however, that the AR eigenvalue estimation is

biased in range dependent environments. Synthetic data from a workshop on inverse

techniques [9] is analyzed. The sequential estimators, associated with a competitive
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smoother[51], successfully estimate jumps in eigenvalues caused by abrupt environmen-

tal changes, a problem that motivated Chapter 3. Data from the Modal Mapping Exper-

iments (MOMAX)[18] are analyzed. The data consist of monochromatic acoustic fields

measured as a function of position in a shallow-water environment, where horizontal

synthetic aperture arrays are formed by drifting buoys or by a moving source.

Chapter 4 discusses the eigenvalue inversion problem. Backus-Gilbert theory[4] is

applied to the analysis of the trade-off between resolution and variance in the eigenvalue

inverse problem. The framework of estimation theory is also applied to the analysis

of the problem. Measurements of acoustic fields produced by moving sources result in

eigenvalue estimation bias due to the Doppler effect. A method is developed to account

for these eigenvalue estimation errors directly in the perturbative formulation. Finally,

a state-space formulation of the inverse eigenvalue problem leads to a Kalman filter

solution suitable for range-dependent environments. Sequences of eigenvalues estimated

as a function of range with the techniques of Chapter 3 are then inverted for sound

velocity profiles in the seabed.
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Chapter 2

Inversion for Subbottom Sound

Velocity Profiles in the Deep Ocean:

Application of an Exact Inverse

Method

2.1 Introduction

This chapter discusses the application of arn exact inverse theory to actual experimental

data. The exact theory was developed by Merab[45] and is based on the work of Gelfand

and Levitan[25] on potential inversion from scattering data in Quantum Mechanics. The

input data required by Merab's method is the complex plane-wave reflection coefficient

at a fixed frequency.

The measurement of the magnitude and phase of the reflection coefficient of the

ocean bottom is an important issue in Ocean Acoustics by itself. In this chapter, we

apply a technique developed by Frisk and co-workers[22, 46] to the measurement of the

reflection coefficient using monochromatic acoustic data from the deep water experiment
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at the Icelandic Basin described by Frisk, Doutt, and Hays[21J.

Section 2.1 reviews Merab's method and Frisk's technique. Section 2.2 describes

the Icelandic Basin experiment. Section 2.3 analyzes the experimental data up to the

measurement of the reflection coefficient. We use simulated pressure fields to discuss the

data analysis procedure and to evaluate the effects of experimental factors not accounted

for in the underlying acoustic model, such as source depth variations with range. We

introduce the concept of residual pressure, an extension of Mook's[46] residual phase,

and apply it to the analysis of the measured and simulated fields. The residual pressure

analysis allowed us to identify measurement errors and recover the pressure data phase.

We estimate the complex, plane-wave reflection coefficient at the experimental site.

Section 2.4 applies Merab's method to the reflection coefficient measured in Section

2.3. Various issues associated with the use of this method in realistic ocean environments

are discussed and illustrated by examples. We introduce a density discontinuity com-

pensation procedure that allows the use of Merab's method in more realistic settings,

and correct an expression for the cutoff frequency for trapped modes in the subbottom.

Finally, we estimate the sound velocity profile at the Icelandic Basin experiment site.

2.1.1 Inversion from Reflection Coefficient Data

A plane wave1 , Pine(z) = etk-z, incident from a homogeneous half-space onto a boundary

at z = 0 (Figure 2-1) at an angle 0 is partially reflected and transmitted into the lower

half-space. The wavenumber vector k0 = (kr, k,) has a vertical component kz = ko cos 9

and horizontal component k, = ko sin 0, where ko = w/co is the magnitude of k0 . The

ratio of reflected and incident waves is the plane-wave reflection coefficient Rb, a function

of the frequency w, the incidence angle 0, and the geoacoustic properties of both half-

spaces, in particular of the sound velocity profile c(z) of the lower half-space.

Merab[451 developed a method for inverting reflection coefficient data for the seabed

sound velocity profile in a horizontally stratified media. The method is based on a work

'The time dependence e-iwt is assumed.
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Rb(kz) eikz

k z 
o 0 XO

PO, CO

p(z), c(z)

Figure 2-1: Reflection coefficient

by Gelfand and Levitan[25] related to the potential inversion in Quantum Mechanics.

The input data is the complex plane-wave reflection coefficient as a function of the

vertical wavenumber k, measured in the water at the water-seabed interface at a single

frequency, Rb(k,).

The Fourier transform of the reflection coefficient, seen as a function of the vertical

wavenumber k,,

rb(Z) f 0j Rb(kz)eik.zdkz, (2.1)

is related to the index of refraction n(z) = co/c(z) through the Gelfand-Levitan integral

equation

K(z, y) + rb(z + y) + j rb(t + y)K(z, t)dt = 0, y < z, (2.2)

and the potential

Vz dK (z, z) 2[V(z) = 2 dKz'z ko [ - n2(z)], z > 0, (2.3)

Note that the reference potential is V(z) 0, z < 0, corresponding to the sound velocity

in water, c(z) = co, n(z) = 1, z < 0. The computation of the Fourier transform, eq.(2.1),
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is reduced to the interval 0 < k, < 0c by using the conjugate-symmetry property

Rb(-k.) = R,(k.), and simplifies to

rb(z)= R Rb(kz)e ikzdkz}, (2.4)

where R{-} denotes the real part.

Equations (2.1) and (2.4) are valid strictly only in absence of trapped modes in

the seabed, which may be excited due to sound velocity profile minima smaller than

the water sound velocity. These trapped modes are analogous to the bound states of

Quantum Mechanics that may occur in regions of negative potential V. When trapped

modes are excited in the seabed, an additional term in eq.(2.1) is required in order to

satisfy rb(z) = 0, z < 0. The term is related to the poles of the reflection coefficient

in the upper k, complex plane. The poles and their residues should, therefore, be also

measured.

As pointed out in [45], however, such trapped modes can be avoided by measuring

the reflection coefficient at sufficiently low frequencies given by the condition

w < gv- ( - ci 3/2 (2.5)

where g = dc/dz (sec- 1) is the constant, positive sound velocity gradient and c,mn < CO

is the minimum sound velocity in the seabed. Equation (2.5) is valid for linear sound

velocity profiles in the seabed.

In Subsection 2.4.1 we show that eq.(2.5) is valid, in fact, when the sound velocity

minimum occur away from the boundary z = 0, for a bilinear velocity profile (where g is

the magnitude of the gradient above and below the minimum). We derive an expression

to account for the case when the minimum sound velocity occurs at the boundary.

One limitation of the Merab method is that the starting point is the standard wave

equation 2 over all domain -oo < z < oo, where density is assumed constant. Consid-
2We refer to the standard form of the time-independent, depth-dependent pressure wave equation
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ering that density discontinuities may be present in the water-seabed interface, this is

a major restriction of the method. In the presence of smooth density variations, the

acoustic wave equation can be reduced to the standard form with a modified index of

refraction[45]

[ _ 1dp 3 (ldp)121
=l+O °2pdZ2 4 .pdz)(

and Merab's method can be used to recover n'(z).

Density discontinuities, on the other hand, can not be directly dealt with. First, as

Ikz[ ---. oo, Rb(kz) --+ O(k1-2)[45] when the density is constant, but tends to a constant

in the presence of density discontinuities, and the Fourier transform in eq.(2.1) would

require a representation in terms of impulses. In fact, the time-independent, depth-

dependent pressure wave equation, which includes derivatives of density, is not valid at

points of density discontinuity. This is circumvented by introducing interfaces at these

points and imposing continuity of pressure and normal particle velocity. We discuss this

issue in Section 2.4.1.

Another important issue on the application of Merab's method is the truncation of

Rb(k,) to a limited aperture a < k, < b. In practice, the reflection coefficient will be usu-

ally available on a range corresponding to real angles of incidence 0 < k, << k, and the

Fourier integral must be truncated. In a series of simulations, Merab[45] shows a degra-

dation of the inverted profile as the kz range decreases, where the reconstructed profile is

a smoothed version of the original. The reconstruction was shown to be reasonably accu-

rate when the range includes the critical incidence region 0 < k_ < k_•,.itia = ko cos 0,

where IRb= 1.

Merab's method requires solving the integral equation (2.2) at each depth. In the

Nystrom method[29], the integral is approximated by a quadrature by setting t, =

-y + nAz and K(z, y) is evaluated at the discrete points Ym = -z + mAz. If the data

[rb(z)] are available at depths zq = qAz, q = 0,, 1, ... , the resulting linear system is

u"(z) + k2(z)u(z) = 0, as opposed to the more general form p(z)(u'(z)/p(z))' + k2(z)u(z) = 0.

17



given by

K(zq, -zq + mAz) + rb(mAz)+
m

AzEWnmrb(nAz)K(zq, zq - (m - n)Az) = 0, m = 1,..., 2q, (2.7)
n=O

where, from eq.(2.2), K(z, -z) = -rb(O). After solving for K(z, y), the derivative in

eq.(2.3) is computed numerically. Notice that the system (2.7) has dimensions 2q x 2q,

which increases with depth and requires rb(z) in the range 0 < z < 2qAz.

Another method that incorporates the computation of the derivatives of K(z, y) into

the linear system was introduced by Khanh[39] and is based on the Hermite corrector

formula of order two

jfb M h h 2g(x)dx = E [g(tk-1) + g(tk)] + - [g(a) - g'(b)] + 0(h 4 ). (2.8)

By differentiating eq.(2.2) with respect to z and y, including the mixed derivative, three

other integral equations are obtained. The discretization of the four integral equations

using eq.(2.8) leads to four coupled linear systems of dimensions (4q + 2) x (4q + 2)

where, in addition to K(z,y), the derivatives 9-K(z,y) and 9,K(z,y) are obtained.

The potential can be computed as [cf. eq.(2.3)]

V(zq) = 2 [OzK(zq, y) + ayK(zq, y)],=q,,

which avoids the approximation of derivatives by finite differences. The main issues with

Khanh's method are (1) the linear system dimension grows fast with depth, and (2) the

use of the first and second derivatives of rb(z) imposes more restrictive requirements on

the behavior of Rb(k,) near infinity.

Other solution methods are described in [45). One that avoids the solution of linear
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systems is based on the series expansion of the integral equation (2.2), leading to

V(z) = V(0 )(z) + V 1)(z) + V(2)(z) +.., (2.9)

where

0 0)(z) = -2 d- (2z) (2.10)

corresponds to the Born approximation, and the other two lowest order terms are

V(')(z) = 4rb( 2 z) (2.11)

and

V(2)(z) = 4rb( 2z) j r2(t)dt + 2 rb(z + t)rb(t + qri)z (z + t)dr7dt. (2.12)
)O bz -~t 9

2.1.2 Measurement of the Reflection Coefficient

From Acoustic Pressure to Reflection Coefficient

The technique described here was developed by Frisk and co-workers[22, 46]. Figure 2-2

is a model for the reflection coefficient measurement setup in deep water, as described by

Frisk, Doutt, and Hays[21]. A monochromatic sound source drifts away from a receiver

close to the bottom, in a homogeneous water half-space overlying a horizontally stratified

seabed. The signal recorded at the receiver is given by the Hankel transform

t00

p(r; z, Zo) = I g(kr, z, zo)Jo(kr)kdkr, (2.13)

0

where g(kr, z, zo) is the depth dependent Green's function and k, is the horizontal com-

ponent of the water wavenumber ko = w/co, which is related to the vertical wavenumber

k, by k02 = k2 + kZ (see Figure 2-1).
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Figure 2-2: Reflection coefficient measurement model: a homogeneous water half-space
overlaying a horizontally stratified seabed.

For the environment of Figure 2-2 the depth dependent Green's function is given by

g(kr; z, zo) = •i [etk, zozI + Rb(kr) eik'(z°+z)] . (2.14)

Notice that the reflection coefficient Rb is described as a function of kr, not k, as in

Merab's method.

Given the pressure as a function of range at constant source and receiver depth, the

Green's function can be computed as the inverse transform

00

g(k;z,zo) =Jp(r;z, zo)Jo(krr)rdr. (2.15)

0

The Hankel transform is performed numerically using the Fourier-Bessel series [76, 47]

0o 2 ,Nf(Yn)JO(XYn)
(y)Jo(xy)yXdy =wy,) < X, (2.16)

where the function f to be transformed is given on the grid yn = A,/X, An is the n-th
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Figure 2-3: Reflection Coefficient Measurement Technique. (a) The basic method: from
a measured pressure field as a function of range r to the reflection coefficient. The Hankel
transform (7- ) of the pressure is the depth dependent Green's function, from which the
plane-wave reflection coefficient is calculated. (b) A more detailed description, including
the pressure normalization (computation of residual pressure to slow down the rate of
change of the phase with range), the interpolation for the ranges r, required by the
Fourier-Bessel series, and the recovery of the pressure data from the residual pressure.

zero of Jo(z), X is the bandwidth of f, i.e. f(x) = 0 for x > X, and w(yn) is a windowing

sequence.

Given the Green's function, the reflection coefficient is obtained as a function of the

horizontal wavenumber k, using eq.(2.14). In principle, the reflection coefficient can

be computed not only for real angles of incidence, where 0 < k, < k0 , but also for

evanescent waves with k, > k0 .

The steps of the reflection coefficient measurement technique are shown in Figure 2-3.

In order to compute the Hankel transform of the pressure field using eq.(2.16), the field

must be interpolated in a range grid determined by the zeros A, of JO(x), r" = An/K,

where K is the bandwidth of the Green's function g(k,).

Although the magnitude of the pressure changes slowly with distance (as seen, for
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